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SUMMARY This paper presents an analytical model for network
throughput of WLANs, taking into account heterogeneous conditions,
namely network nodes transmit different length frames with various of-
fered load individually. The airtime concept, which is often used in multi-
hop network analyses, is firstly applied for WLAN analysis. The proposed
analytical model can cover the situation that there are saturation and non-
saturation nodes in the same network simultaneously, which is the first
success in the WLAN analyses. This paper shows the network through-
put characteristics of four scenarios. Scenario 1 considers the saturation
throughputs for the case that one or two length frames are transmitted at
the identical offered load. Scenarios 2 and 3 are prepared for investigating
the cases that all network nodes transmit different length frames at the iden-
tical offered load and identical length frames at the different offered loads,
respectively. The heterogeneous conditions for not only frame length but
also offered load are investigated in Scenario 4.
key words: WLAN, throughput, analysis, frame length, offered load, het-
erogeneous conditions

1. Introduction

Wireless Local Area Network (WLAN) has been widely de-
ployed [1], [2], and applications in WLAN become diversi-
fied with the increase in users. It can be stated that WLAN
is often in heterogeneous conditions, namely, network nodes
transmit different length frames with various offered load in-
dividually. Additionally, the situations that there are satura-
tion and non-saturation nodes in the same network simul-
taneously often appear. It is, however, not easy to compre-
hend behaviors and performance of the network nodes in the
heterogeneous conditions. Analytical expressions are useful
and helpful for predicting the network performance.

There are many analytical models of IEEE 802.11
WLAN [3]–[7]. The Markov-chain model presented by
Bianchi [3] is a pioneer and well-known model for ex-
pressing WLAN throughput. Bianchi’s model expresses the
backoff-timer state in the IEEE 802.11 Distributed Coordi-
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nation Function (DCF). Since the proposal of the Bianchi’s
model, many extended versions of Bianchi’s model have
been presented, which considered coupling effect [4], cap-
ture effect [5], and non-saturated condition [6]. These ana-
lytical models are based on the assumption that all the net-
work nodes work for the homogeneous conditions, namely
transmit identical length frame with the same frame oc-
curence probability. Recently, a throughput model under the
heterogeneous conditions was presented in [7]. This model
is also the extended version of the Bianchi’s model and it
is possible to obtain network performance by expressing the
network-node operations individually. The analytical model
in [7], however, still has a limitation of network situations.
For example, it is impossible to express the network perfor-
mances when there are saturation and non-saturation nodes
in the same network simultaneously. This is because the
model in [7] is based on the assumption that all the network
nodes are non-saturated.

On the other hand, multi-hop network analyses have
been carried out actively. In most WLAN analyses, the
major factor of the throughput degradation is frame colli-
sions due to concurrent frame transmissions. In the multi-
hop networks, however, the major factor of the through-
put degradation is not concurrent-transmission frame col-
lisions but frame collisions due to hidden nodes. Addition-
ally, the carrier-sensing relationships among network nodes
also limit the network throughput. For expressing the frame
collisions due to hidden nodes and the carrier-sensing rela-
tionships, the time shares of transmission, carrier sensing,
and idle states at each node are useful. The airtime concept
appeared from these backgrounds [8]–[11]. The multi-hop
network analyses have been progressed based on the airtime
concept, which follows the different way from WLAN anal-
yses. By using airtimes, it is possible to express transmis-
sion probability, frame-collision probability, carrier-sensing
duration, and frame-existence probability with respect to
each network node in simple forms [11]. None, however,
has considered that the airtime concept is applied to WLAN
analysis. This is because the airtime was proposed for ex-
pressing the hidden node collisions and carrier-sensing rela-
tionships.

The end-to-end delay analysis of string-topology multi-
hop networks was carried out in [11]. It is noticed that the
analysis in [11] can express the network performance even
when the saturation and non-saturation nodes coexist in the
same flow. The results in [11] suggest that the airtime con-
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cept may be suitable to express heterogeneous conditions in
WLANs as well as multi-hop networks, which is our major
idea of this paper.

This paper presents a new analytical model for network
throughput of WLANs, taking into account heterogeneous
conditions. The airtime concept is applied for expressing
WLAN analysis. By applying the airtime concept, it is
possible to express frame-existence probabilities of network
nodes as a function of the airtimes. Additionally, our ana-
lytical model can cover the situation that both saturation and
non-saturation nodes coexist in the same network simultane-
ously. For showing the validity of the analytical expressions,
this paper discusses the network throughput characteristics
of four scenarios with the heterogeneous conditions.

2. Related Works

2.1 Analysis of IEEE 802.11 WLANs

There are many analytical models of IEEE 802.11 WLANs
[3]–[7]. One of the most famous models for WLANs is pre-
sented by Bianchi [3], which is a Markov-chain model for
expressing the backoff timer decrement in the IEEE 802.11
Distributed Coordination Function. The Bianchi’s model
and its extended versions assumed that the network is in the
homogeneous condition. We can obtain simple expressions
in the homogeneous conditions because all network nodes
operation can express with the identical forms on the prob-
ability representations.

Recently, an analytical model of WLANs for heteroge-
neous conditions is proposed in [7]. It is possible to derive
the analytical expressions in the heterogeneous conditions
by considering the network node individually. Obviously,
all the nodes in WLANs have identical transmission prob-
ability, frame-collision probability in the saturation condi-
tion, it is assumed in [7] that network nodes are in the non-
saturation conditions. In real networks, the situation that
saturation and non-saturation nodes coexist in the network
simultaneously may often appears. There is, however, no
analytical expression, which is valid for such kind of situa-
tion.

2.2 Analysis of Multi-Hop Network Based on Airtime
Concept

On the other hand, there are also many analytical models of
multi-hop networks [8]–[11]. For expressing the frame col-
lisions due to hidden nodes and the carrier-sensing relation-
ships among the nodes, one of the effective approaches of
multi-hop network analysis is the use of airtimes [8], which
are time-shares of the network-node state. The multi-hop
network analyses have been progressed based on the air-
time concept, which follow the different way from WLAN
analyses. This is because the airtime expressions are very
useful and convenient for modeling the networks including
many hidden node relationships. The first analysis using air-
time assumes that the analysis object is sufficiently long-hop

string topology network with network-saturation condition.
By taking into account long-hop network, the edge problem
can be ignored and simple analytical forms can be obtained.
In short-hop network, edge problem should be considered
[9]–[11]. In the multi-hop networks, there are both satu-
ration and non-saturation nodes simultaneously even when
the network throughput is saturated [11]. Namely, the air-
time concept can be adopted the coexistence states of satura-
tion and non-saturation nodes. This means that airtime con-
cept is also suitable to WLAN analysis for heterogeneous
condition, in particular, which is our claim in this paper.
There is, however, no analytical consideration with differ-
ent frame lengths in the multi-hop network analysis because
most of multi-hop network analysis focuses one flow string-
topology network [8]–[11].

3. Throughput Analysis of WLAN with Airtime Con-
cept

The purpose of this paper is to obtain analytical expressions
of network throughputs for WLANs for heterogeneous con-
ditions. It is considered that network nodes transmit differ-
ent length frames with various frame occurence probabili-
ties. The main idea of our analysis is to apply the airtime
concept for throughput analysis of WLANs. In our knowl-
edge, there is no WLAN analysis with airtime concept. It is
expected that the airtime expressions may be suitable to the
WLAN analysis with heterogeneous conditions. For obtain-
ing network throughputs, transmission probabilities, frame-
collision probabilities, frame existence probabilities are ex-
pressed with respect to each node.

Figure 1 shows the network topology, which is ana-
lyzed in this paper. This paper focuses on WLANs with one
access point (AP), and N nodes. In addition, the analysis in
this paper is based on the following assumptions:

1. Network nodes generate UDP frames with constant
frame occurence probabilities, which follow the Pois-
son distribution.

2. A network node is in the carrier-sensing range of all the
other nodes and the AP.

3. The channel condition is ideal. Therefore, transmission
failures occur due to only frame-collisions.

It can be considered in this paper that there are satura-
tion and non-saturation nodes simultaneously, which is the
difference of the assumptions between [7] and this paper. It
is difficult to obtain analytical expressions with this situa-
tion by extending the model in [7]. Because the queuing

Fig. 1 Example of a network.
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model in [7] is not suitable to express both the saturation
and non-saturation conditions.

3.1 Transmission Airtime

The transmission airtime is the time share for frame trans-
mission, which includes durations of both the successful and
failure transmissions [8]–[11]. Concretely, the transmission
airtime of Node i is defined as

Xi = lim
Time→∞

si

T ime
, (1)

si is the sum of the durations of the DATA-frame trans-
missions (DAT A), ACK frame-transmissions (ACK), Dis-
tributed InterFrame Space (DIFS ), and Short InterFrame
Space (S IFS ).

3.2 Frame-Collision Probability and Collision Airtime

A frame collision occurs when multiple nodes start to trans-
mit a frame, namely, the back-off timer of the multiple nodes
become zero simultaneously. When the transmission prob-
ability of Node i at channel-idle state is expressed as τi,
the frame-collision probability transmitted by Node i is ob-
tained as

γi = 1 −
N∏

j=1
j!i

(1 − τ j). (2)

It is necessary to consider the lengths of the collided
frames. Figure 2 shows examples of frame collision occur-
rences in the different frame lengths. When a frame col-
lision occurs, all the nodes cannot go back to the back-off
timer countdown state until the longest frame transmissions
are ended. The durations for the longest frame transmission
in the collided frames are called the frame-collision dura-
tion. In Fig. 2, the frame-collision durations are T2 and T3
for the frame collisions a and b, respectively.

The probability that a transmitted frame from Node i
collided with m (m < N) nodes is expressed as

Ci =
Tmaxi

Ti

=
1
Ti

N−1∑

m=1

γ(i,m)

γi

N∑

k1=1
k1!i

N∑

k2=1
k2!i,k2!k1

...
N∑

km=1
km!i,km!k1,...,km!km−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τk1τk2 ...τkm

∏N
l=1,l!i

l!k1,...,l!km

(1 − τl)

γ(i,m)
max(Ti,Tk1 , ..., Tkm )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

Tiγi

N−1∑

m=1

N∑

k1=1
k1!i

N∑

k2=1
k2!i,k2!k1

...
N∑

km=1
km!i,km!k1,...,km!km−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
τk1τk2 ...τkm

N∏

l=1,l!i
l!k1,...,l!km

(1 − τl) max(Ti,Tk1 , ..., Tkm )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Fig. 2 Example of frame-collisions due to concurrent-frame-
transmission.

γ(i,m) =

N∑

j1=1
j1!i

N∑

j2=1
j2!i

j2! j1

...
N∑

jm=1
jm!i

jm! j1
...

jm! jm−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ j1τ j2 ...τ jm

N∏

l=1
l!i

l! j1
...

l! jm

(1 − τl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Obviously, the frame-collision probability of Node i satis-
fies

γi =

N−1∑

m=1

γ(i,m). (4)

The ratio of expected value of frame-collision time to
one transmission duration of Node i, Ci, can be expressed
as (5), where Ti = DIFS + DAT Ai + S IFS + ACK. From
the above preparations, the collision airtime of Node i can
be expressed as

Wi = γiXiCi. (6)

We would like emphasize that Wi − Xiγi is included in the
carrier-sensing airtime of Node i, which is explained in 3.3.
By using collision airtime, it is possible to express the colli-
sion state with different length frames.

3.3 Carrier-Sensing Airtime

The carrier-sensing airtime is the time-share of the carrier-
sensing state. Basically, the carrier-sense airtime of Node
i is the total transmission airtimes of the carrier-sensing
nodes. For obtaining the carrier-sensing airtime of Node
i accurately, however, it is necessary to consider the over-
laps of the multiple transmissions due to the frame collisions
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among other nodes. Therefore, the carrier-sense airtime of
Node i can be expressed as

Yi =

N∑

j=1
j!i

{
Xj(1 − γ j) +Wj

[
1 − τi

γ j

]}
+Wi − Xiγi. (7)

By using airtime, it is possible to express the carrier-
sensing state at different length frames, which is also one of
the advantages to apply the airtime concept to the WLAN
analysis.

3.4 Idle Artime

The idle airtime of Node i is the time-share of backoff-time
decrement or no frame in the buffer. Namely, idle state is the
state except transmission and carrier-sensing states. There-
fore, idle airtime can be expressed as

Zi = 1 − Xi − Yi. (8)

3.5 Transmission Probability and Frame-Existence Proba-
bility

According to [12], the transmission probability when Node
i is in idle state at the saturation condition is expressed as

Gi =
Ri

Vi
=

K∑

s=0

γs
i

K∑

s=0

γs
i Bs

2

, (9)

where Ri and Vi are the mean numbers of frame transmission
attempt and backoff-timer (BT) decrement for one frame-
transmission success, respectively. Additionally, Bs is

Bs=

{
2s(CWmin + 1) − 1, 0 ≤ s ≤ K′ − 1
2K′(CWmin + 1) − 1 = CWmax, K′ ≤ s ≤ K (10)

where CWmin and CWmax are the minimum and the
maximum contention-window values respectively, K′ =
log2

CWmax+1
CWmin+1 and K is the retransmission limit number. It

is known from [9] that at the saturation condition the rela-
tionship between the transmission and idle airtimes can be
expressed as

Xi =
GiTiZi

σ
. (11)

For the definition of the frame transmission probabil-
ity at non-saturation condition, it is necessary to derive the
frame-existence probability Qi, which is the probability that
Node i has at least one frame in the channel-idle state. This
is because Gi is defined on the assumption of the saturation
condition. Because the BT decrement is carried out only
when a node has frames in the channel-idle state, an airtime
that Node i decreases the BT in whole time is

Q
′
iZi = λiσVi =

σOiVi

Pi
, (12)

where Q′
i is the frame-existence probability at non-

saturation condition, λi is the frame-occurrence rate, Oi =
λiPi is the offered load, and Pi is the payload size. Addi-
tionally, σVi means the average spending time of BT decre-
ment for one frame transmission success. (12) is based on
the fact that the frame-occurrence number is the same as
frame-transmission number in the non-saturation condition.
By using λi, we have also another expression of transmis-
sion airtime as

Xi = λiRiTi. (13)

From (9), (12), and (13), we have

Xi =
GiQ

′
iTiZi

σ
. (14)

By using (12), it is possible to express the frame-existence
probability as

Qi = min
(
1,Q

′
i

)
= min

(
1,
σOiVi

PiZi

)
, (15)

which is valid for both the saturation and non-saturation
states. The min function prevents Qi from exceeding 1. Note
that the frame-existence probability, which expresses both
saturation and non-saturation conditions, can be expressed
by using airtime. This is the most important reason why the
airtime concept is applied to this analysis.

Finally, the general expression of the frame transmis-
sion probability at channel-idle state can be obtained from
(11), (14), and (15) as

τi = GiQi =
σXi

TiZi
. (16)

3.6 Network Throughput

By using the transmission airtime, throughput of Node i is
obtained as

Ei = Xi(1 − γi)
Pi

Ti
= τσ(1 − γi)PiZi. (17)

In WLAN, the network throughput is the sum of all the
network-node throughputs, which is expressed by

Etotal =

N∑

i=1

Ei. (18)

From (2), (6)–(8), (14)–(16), we have 7N relationships
expressed by the algebraic equations. These equations con-
tain 7N unknown parameters, which are γi, Wi, Yi, Zi, Qi,
Xi, and τi, for i = 1, 2, ...,N. It is possible to fix the 7N
unknown parameters when the offered loads of all network
nodes are given. In this paper, Newton’s method is used for
solving the algebraic equations [13]. When we can fix the
unknown parameters, it is possible to predict network per-
formance, such as throughput, frame-existence probability
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Table 1 System parameters.
MAC header 24 bytes
PHY header 16 bytes

ACK size 10 bytes
Data rate 54 Mbps

ACK bit rate 24 Mbps
SIFS time (S IFS ) 16 µsec
DIFS time (DIFS ) 34 µsec

slot time(σ) 9 µsec
CWmin 15
CWmax 1023

Retransmission limit (K) 7

Table 2 Introduction for four scenarios.
Scenario Types of frame lengths Offered loads

1 One or two Identical
2 Eight Identical
3 One Non-identical
4 Eight Non-identical

and frame-collision probability.

4. Simulation Verification

In this section, the validities of the proposed analytical ex-
pressions are evaluated and discussed from comparisons
with the simulation results. Table 1 gives system parameters
for simulations and analytical predictions, which basically
follows the IEEE 802.11a standard [14]. The WLAN with
eight nodes is considered with four scenarios which are in-
troduced briefly as given in Table 2. An original simulator,
which was implemented by authors, was used in this paper.
The original simulator describes only the MAC layer oper-
ations. When frame transmissions are overlapped, both the
frames are regarded as collided frames. The operations of
all the nodes and the access point are expressed in slot time
variations. The static routing tables are given for all the net-
work nodes to the access point. Transmission frames yield
in each network node with Poisson distribution. The offered
load can be calculated from the occurrence frame number.
Additionally, throughputs are obtained from the reception
frame number at the access point. The source file of our sim-
ulator is available on [15]. It was confirmed that the original
simulator gave the same WLAN throughputs as NS3 simu-
lator [16]. This paper shows the throughput characteristics
from NS3 simulation as well as the original simulator.

4.1 Comparisons with Previous Model Form [3]

In Scenario 1, there are two length frames in the network,
namely 500 bytes and 1000 bytes. Figure 3 shows the maxi-
mum network throughputs as a function of ratio of 500-byte
node number H.

It is seen from Fig. 3 that the maximum network
throughput decreases as the short-frame transmission node
increases. This is because the data payload decreases as
DATA frame length becomes short. In the cases of H = 0
and 1, which mean all the nodes transmit the same-length

Fig. 3 Maximum network throughput as a function of ratio of 500-byte
node number.

frame, the proposed analytical results agree with the results
in the previous papers of [3]. Additionally, the analytical
predictions agree with the simulation results in the range of
0 <H< 1. There results show the validity of the proposed
analytical model.

4.2 For Different Frame Lengths and Identical Offered
Load

Next, we consider the case that Node i transmits (200+100i)
bytes frames with identical offered loads Oi = O as Sce-
nario 2. Namely, the frame-occurence probabilities depend
on the nodes. Figure 4 shows throughputs, frame-existence
probabilities, and frame-collision probabilities as a function
of the offered load for fixed node. It can be seen from
Fig 4(a) that the throughputs increase in proportion to the
offered load in the range of 0 < O < 2.15 Mbps. This
is because all the nodes are in non-saturation state, which
are confirmed from Fig. 4(b). Namely, it is seen that frame-
existence probabilities of all the nodes are less than one in
the range. The frame-occurrence probability increases as
the frame length decreases because of the identical offered
load condition. As a result, the frame-existence probability
reaches one firstly at O = 2.15 Mbps. For O > 2.15 Mbps,
the frame-existence probabilities of nodes except Node 1
still increase. Therefore, both frame-collision probability
and carrier-sensing airtime increase, which is confirmed
from Fig. 4(c). As a result, the throughput of Node 1 de-
creases as offered load increases in the saturation condition.
It is also seen from Fig. 4(b) that all nodes are saturated at
O = 3.15 Mbps. Therefore, the network throughput and
frame-collision probability with respect to each nodes keep
the constant value in the range of O > 3.15 Mbps. Addition-
ally, it can be confirmed from Figs. 4(a) and (b) that each
node obtains its maximum throughput when the existence
probability of the node reaches one.

In this scenario, there are saturation and non-saturation
nodes in the same network simultaneously in the range of
2.15 < O < 3.15 Mbps, which can be seen from Fig. 4(b). It
can be stated that the proposed analytical model is valid for
the WLAN networks with heterogeneous conditions.
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Fig. 4 Network characteristics as a function of offered load of each node for Scenario 2. (a) Through-
put. (b) Frame-existence probability. (c) Frame-collision probability.

Fig. 5 Network characteristics as a function of offered load of Node 1 for Scenario 3. (a) Throughput.
(b) Frame-existence probability. (c) Frame-collision probability.

Fig. 6 Network characteristics as a function of offered load of each node for Scenario 4. (a) Through-
put. (b) Frame-existence probability. (c) Frame-collision probability.

4.3 For Same Frame Length and Non-Identical Offered
Load

It is considered that all the nodes transmit 500 bytes frames
with non-identical offered loads. The offered load of
Node i is given by Oi = (O1 + (i − 1)/2) Mbps. Fig-
ure 5 shows throughputs, frame-existence probabilities and
frame-collision probabilities as a function of the offered

load O1 for fixed node. All the nodes are in non-saturation
state in the rage of 0 < O1 < 0.28 Mbps. From (15), the
frame-occurrence probability increases as the offered load
increases because of the same frame length condition. It is
seen from Fig. 5(b) that Node 8 becomes in the saturation
state firstly at O1 = 0.28 Mbps with the increase in the of-
fered load. In the region of O1 > 0.28, the frame-collision
probabilities of network nodes are almost constant. All the
nodes are in saturation state at O1 = 1.98 Mbps.
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4.4 Co-Existence of Saturation and Non-Saturation Nodes

Next, another scenario is considered. The frame lengths in
Scenario 4 are the same as those of Scenario 2. In this sce-
nario, Nodes 3 and 6 transmit frames with a constant of-
fered load, namely O3 = 1 Mbps and O6 = 2 Mbps, which
are lower than the saturation throughput in Fig. 4. The other
nodes transmit frames with identical offered load, namely,
O1 = O2 = O4 = O5 = O7 = O8 = O.

Figure 6 shows the throughputs, frame-existence prob-
abilities, and frame-collision probabilities as functions of
O for the fixed node. It is seen from (15) that the frame-
existence probability is affected by the frame-occurrence
rate and idle airtime. Similar to Scenarios 2 and 3, the
throughput and frame-existence probability of the nodes,
whose offered loads are not constant, increase with the
increase in the offered load in the non-saturation region.
The frame-existence probabilities of non-constant offered
load nodes reach one as offered load increase. The frame-
existence probabilities of nodes 3 and 6, however, never
reach one. It is seen from Fig. 6(a) that network throughput
is saturated for O > 3.55 Mbps. It can be stated from these
results that there are saturation and non-saturation nodes si-
multaneously at the saturation network throughput condi-
tion.

It is seen from all the results in Figs. 3–6 that the ana-
lytical predictions agree with the simulation results quanti-
tatively, which show the validities of the analytical expres-
sions in this paper. Additionally, throughputs of all the sce-
narios show the complete agreements between the original
simulator and NS3, which denote the credibility of the orig-
inal simulator.

5. Conclusion

This paper has presented an analytical model for network
throughput of WLANs, taking into account frame length
and offered load. The airtime concept is firstly applied for
WLAN analysis in this paper. Network throughputs can
be obtained analytically by expressing frame-collision prob-
abilities and frame-existence probabilities with respect to
each node. The proposed analytical model could cover het-
erogeneous operations of network nodes. Additionally, it
is possible to express the network throughput even when
buffer-full and buffer-empty nodes coexist. The validities
of the analytical expressions are confirmed from quantita-
tive agreement between analytical predictions and simula-
tion results.
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